Prädatoren

- Was sind Prädatoren oder Räuber? verschiedene Typen von Räubern
- · Fuchs, Tollwut und Niederwild

Was sind Prädatoren?

- Parasiten
- Parasitoide
- Weidegänger/Herbivoren
- echte Räuber

Räuber -> Beute

- Prädation hat immer nachteiligen Effekt für Beute, aber:
- Beutetierindividuen oft nicht Zufallsstichprobe
- · dichteabhängige Reaktion
- => negativer Effekt geringer als erwartet

Räuber -> Beute

- ist Räuberdichte hoch im Vergleich zur Beutetierdichte und ernährt sich Räuber hauptsächlich von dieser Beute => starker
- ansonsten Effekt oft geringer und schwer anschätzbar

Generalisten - Spezialisten

- Generalisten ernähren sich von vielen verschiedenen Beutearten
 - => unabhängig von Beutedynamik
 - => starker Einfluß auf Beute möglich
- Spezialisten ernähren sich nur von einer Beuteart und sind deshalb von ihr abhängig

Nahrungspräferenz

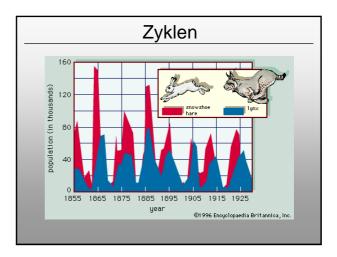
- liegt vor, wenn Beutetiere nicht entprechend ihrem Angebot genutzt werden
- positiv: Beuteart wird häufiger genutzt (bevorzugt)
- negativ: wird weniger genutzt (gemieden)

Numerische und funktionale Reaktion

Numerisch: Populationgröße vom Räuber reagiert auf Änderungen der Beutepopulation

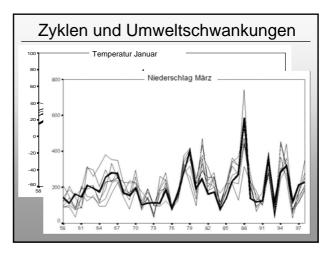
Funktional: Räuber reagiert nur mit Verhaltensänderung, z.B. frißt weniger oder etwas anderes

=> Dichteabhängigkeit der Beutepopulation auf niedrigem Niveau

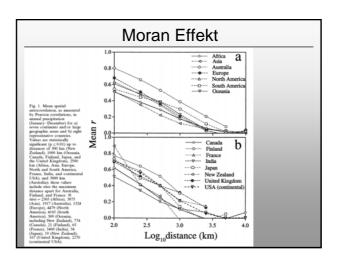

"Räuberloch" - predator pit

Liegt vor, wenn Räuber starke Präferenz für eine Beuteart hat, von dieser aber nicht abhängig ist.

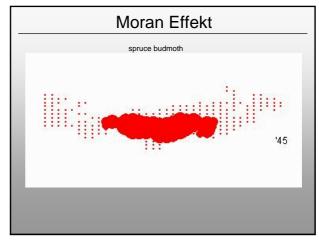
=> sehr starker Einfluß auf diese Art


Co-Evolution

- vor allem in Fällen, in denen Räuber- und Beuteart eng aneinander angepaßt sind
- z.B. Geparden und Gazellen: beide extrem schnell
- stirbt einer aus, besitzt der andere unbenötigte Fähigkeiten, z.B. Gabelböcke in den US

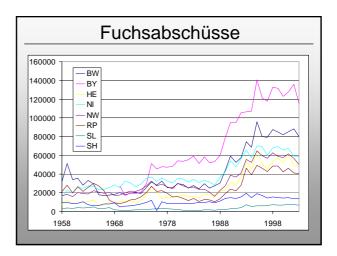

Zyklen

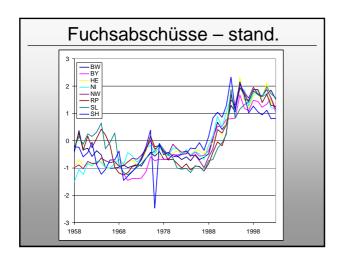
- regelmäßig wiederkehrende Populationsschwankungen mit konstanter Länge, aber nicht unbedingt konstanter Höhe
- Mechanismen noch nicht völlig verstanden
- klassisches Thema der Populationsdynamik

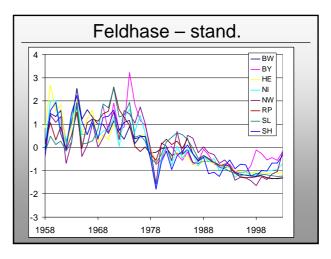


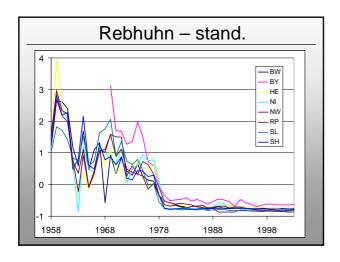
Moran Effekt

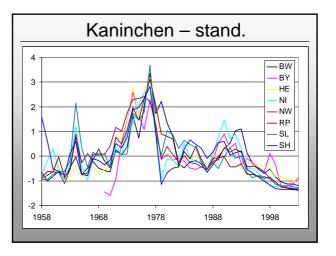
- räumliche Synchronisation ökologischer Ereignisse über große Distanzen
- synchrone Umweltschwankungen steuern das System
- Dispersal spielt eine Rolle
- nachteilig für das Überleben von Metapopulationen

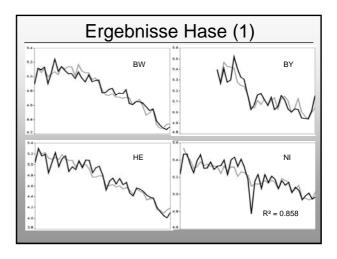

Zusammenfassung Theorie

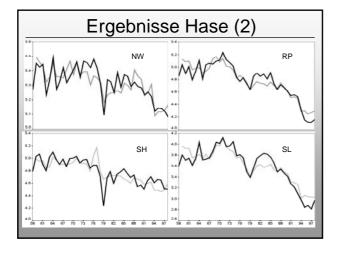

- Räuber können Beute beeinflussen und umgekehrt, müssen es aber nicht.
- Räuber können Dichteabhängigkeit der Beutepopulationen auf niedrigem Niveau verursachen
- Räuber können numerisch oder funktional auf Beutetierschwankungen reagieren.
- Viele Mechanismen noch nicht verstanden.

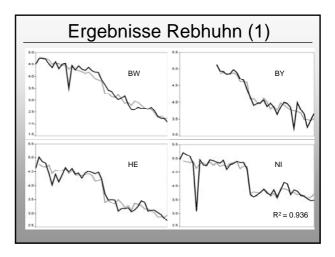


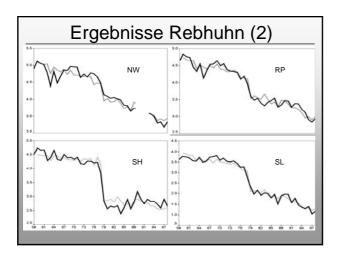

Fuchs, Tollwut und Niederwild

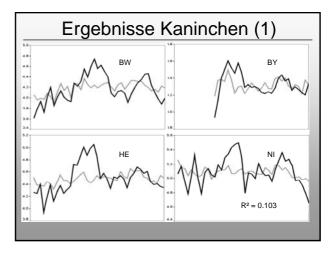

- Einfluß von Fuchs auf Niederwild allgemein
- Einfluß der Tollwutimmunisierung auf Fuchspopulation
- => Einfuß der Tollwutimmunisierung auf das Niederwild

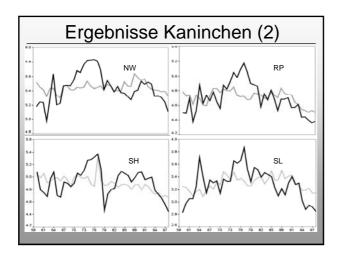

Analyse-Ansatz (1)

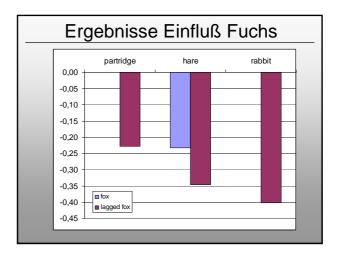

- Fragestellung: Wie groß ist der Einfluß der Fuchspopulation auf die 3 Niederwildpopulationen?
- Abhängige und unabhängige Variablen => Regressionsanalyse
- Zähldaten => Logarithmische Transformation
- Andere Einflüsse: Wetter => Daten besorgen
- Zeitreihendaten: Autokorrelation beachten!

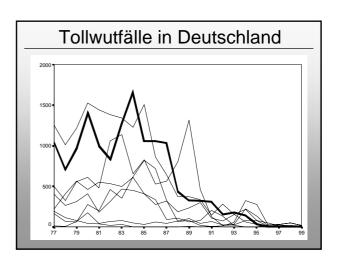

Komplikationen

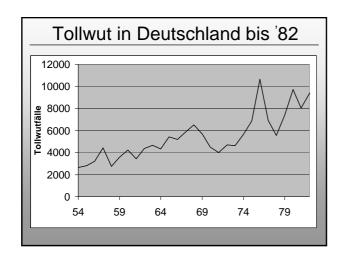

- Linearer Trend, Crash, keine Daten? => Dummy-Variablen
- Wechselwirkungen zwischen Variablen => Interaktionen
- Unterschiedliche Jagdzeiten bei Fuchs und Niederwild => verschiedene zeitverzögerte Variablen

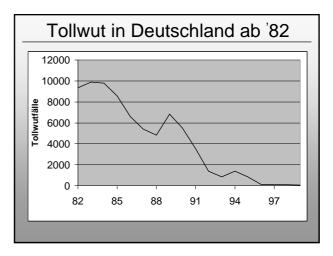

variable	β	p
year	-0.0033	< 0.001
crash	-0.5996	< 0.001
year * province		< 0.001
crash * province		< 0.001
lagged fox	-0.2276	< 0.001
temperature January (mean)	0.00317	< 0.001
precipitation January	-<0.00133	0.001
constant	7.7209	< 0.001

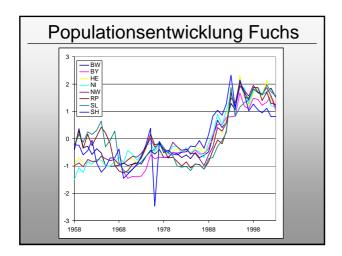




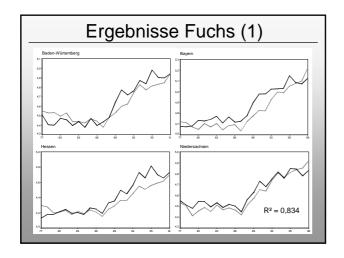


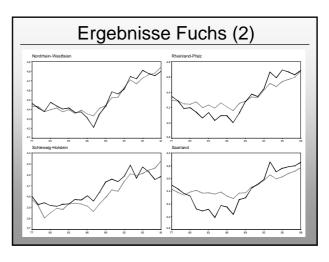





Fuchs und Tollwut

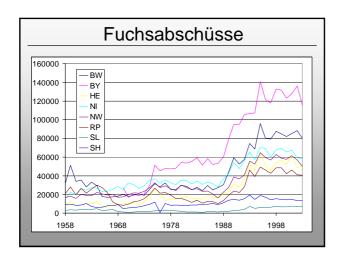
- Fuchs war einziger wichtiger Tollwutvektor in Deutschland
- Ab 1985/90 bundesweite Tolwutimmunisierung
- Der Einfluß der Tollwut auf die Populationsgröße des Fuchses war unklar vor der Immunisierung



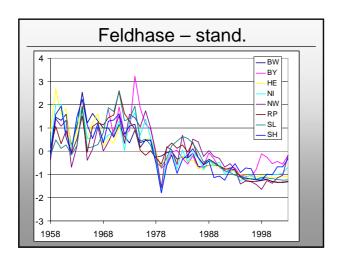


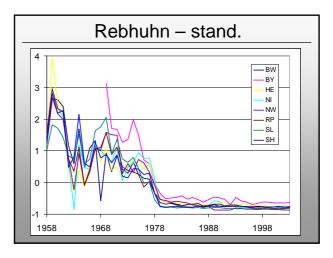
Variable	Beta	р
Land		
Vn_impf	-4,2446	0,000
Jahr	-0,00025	0,967
Vn_impf * Jahr	0,04831	0,000
Kaninchen	0,1953	0,000
Temp April	0,001465	0,000
Temp Mai	0,000790	0,001
Konstante	2,5044	

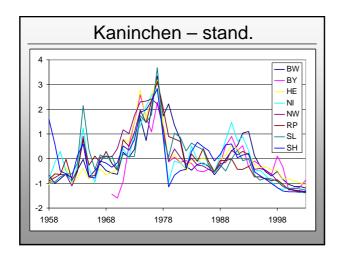
Effekt von Tollwutimmunisierung auf das Niederwild?

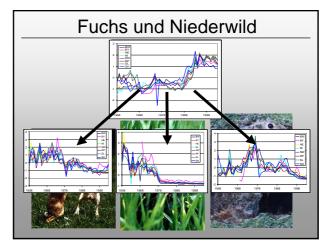

- noch keine Analysen
- visuelle Anschätzung schwierig, aber Effekt wahrscheinlich
- eines der nächsten Projekte

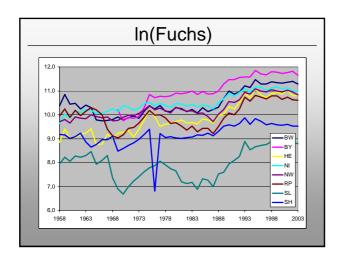


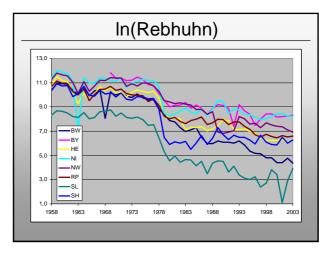


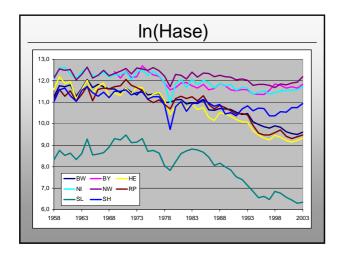

Datengrundlage

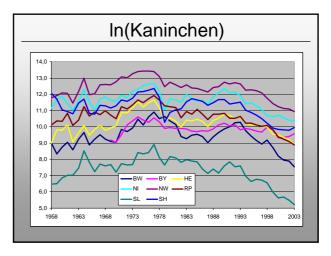

- Jagdstrecken für alle Bundesländer von 1958-98
- detaillierte Wetterdaten (Temperatur, Niederschlag) aus über 600 Wetterstationen in ganz Westdeutschland

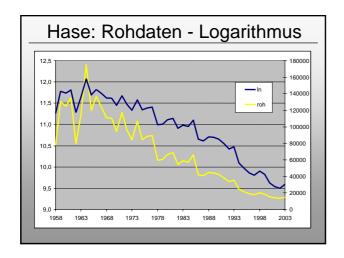








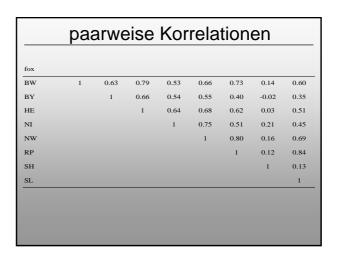


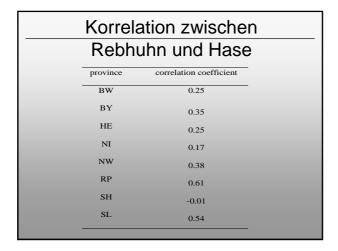


Regressionsanalyse

- abhängige und unabhängige Variablen
- Skalenniveaus der Variablen
- Signifikanztest
- Einfluß einzelner Variablen
- Vorhersagen und Fehlerterme
- Güte der Regressionsmodels

Sind Jagdstrecken gute Populationsindezes?


- wenn Trends in BL ähnlich sind
- wenn jährliche Fluktuationen in BL ähnlich sind
- wenn jährliche Fluktuationen zwischen vergleichbaren Arten im selben BL ähnlich sind


province	partridge	hare	rabbit	fox
BW	-0.160	-0.0466	0.0153	0.0265
BY	-0.130	-0.0335	-0.0010	0.0642
HE	-0.121	-0.0624	0.0160	0.0468
NI	-0.093	-0.0261	-0.0014	0.0272
NW	-0.121	-0.0137	0.0016	0.0273
RP	-0.111	-0.0445	-0.0071	0.0126
SH	-0.143	-0.0276	-0.0086	0.0214
SL	-0.175	-0.0493	-0.0041	0.0091

paarweise Korrelationen								
partridge	BW	BY	HE	NI	NW	RP	SH	SL
BW	1	0.31	0.37	0.14	0.26	0.25	0.25	0.11
BY		1	0.34	0.39	0.33	0.31	0.37	0.20
HE			1	0.62	0.71	0.63	0.49	0.35
NI				1	0.72	0.52	0.43	0.37
NW					1	0.74	0.43	0.51
RP						1	0.62	0.70
SH							1	0.60
SL								1

	paa	ırwei	ise l	Corr	elati	ione	n	
hare								
BW	1	0.52	0.75	0.59	0.60	0.68	0.54	0.60
BY		1	0.51	0.49	0.36	0.29	0.22	0.47
HE			1	0.74	0.80	0.67	0.54	0.58
NI				1	0.90	0.58	0.83	0.68
NW					1	0.64	0.73	0.66
RP						1	0.61	0.85
SH							1	0.66
SL								1

paarweise Korrelationen							
1	0.40	0.55	0.38	0.55	0.63	0.21	0.47
	1	0.66	0.40	0.57	0.43	0.24	0.30
		1	0.68	0.70	0.72	0.51	0.33
			1	0.77	0.52	0.75	0.58
				1	0.55	0.52	0.53
					1	0.32	0.54
						1	0.31
							1
	•	1 0.40	1 0.40 0.55 1 0.66	1 0.40 0.55 0.38 1 0.66 0.40 1 0.68	1 0.40 0.55 0.38 0.55 1 0.66 0.40 0.57 1 0.68 0.70 1 0.77	1 0.40 0.55 0.38 0.55 0.63 1 0.66 0.40 0.57 0.43 1 0.68 0.70 0.72 1 0.77 0.52 1 0.55	1 0.40 0.55 0.38 0.55 0.63 0.21 1 0.66 0.40 0.57 0.43 0.24 1 0.68 0.70 0.72 0.51 1 0.77 0.52 0.75 1 0.55 0.52 1 0.32

Sind Jagdstrecken gute
Populationsindezes?

es schaut gut aus,
aber ein Beweis ist
das nicht