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Abstract

Due to time and financial constraints indices are often used to obtain landscape-scale estimates of relative species
abundance. Using two different field methods and comparing the results can help to detect possible bias or a non
monotonic relationship between the index and the true abundance, providing more reliable results. We used data obtained
from camera traps and feces counts to independently estimate relative abundance of red foxes in the Black Forest, a
forested landscape in southern Germany. Applying negative binomial regression models, we identified landscape
parameters that influence red fox abundance, which we then used to predict relative red fox abundance. We compared the
estimated regression coefficients of the landscape parameters and the predicted abundance of the two methods. Further,
we compared the costs and the precision of the two field methods. The predicted relative abundances were similar
between the two methods, suggesting that the two indices were closely related to the true abundance of red foxes. For
both methods, landscape diversity and edge density best described differences in the indices and had positive estimated
effects on the relative fox abundance. In our study the costs of each method were of similar magnitude, but the sample size
obtained from the feces counts (262 transects) was larger than the camera trap sample size (88 camera locations). The
precision of the camera traps was lower than the precision of the feces counts. The approach we applied can be used as a
framework to compare and combine the results of two or more different field methods to estimate abundance and by this
enhance the reliability of the result.
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Introduction

Reliable knowledge on the abundance of a species is desirable

for managers when establishing wildlife management practices

[1,2]. However, there are only few species and landscapes that

allow absolute abundance to be obtained on a large scale with the

prevailing time and cost constraints most studies are under. On the

other hand, for most decisions on suitable conservation practices,

knowledge of the relative abundance is sufficient. Further,

information on factors influencing species abundance, such as

landscape variables, can be derived without knowledge of absolute

abundance.

Indices are a cost effective way to estimate the relative

abundance of a species [3]. There is a large variety of field

methods to choose from for obtaining an index of abundance,

whereas the most appropriate field method to be used depends on

the species of interest and the landscape where the research is

taking place [4]. Commonly, abundance indices are based on

animal signs (i.e. track, vocal, den or feces counts), photographs

obtained with remote camera traps, and records of hunting bags or

road traffic casualties.

One major challenge with indices of abundance is that they are

prone to various sources of bias, for example due to differences in

the persistence or detectability of signs among seasons or habitats.

To reduce possible sources of bias a standardized sampling

protocol is required. Where this is not feasible, possible sources of

bias can be included as covariates in a regression framework [5].

Still, some sources of bias may remain undetected. Another

challenge is the unknown relationship between the index values

and true abundance; it might not be linear and at worst not even

monotonic. Using and comparing two or more dissimilar field

techniques, can enable researchers to detect discrepancies that are

caused by bias or a non monotonic relationship.

There is a vast amount of studies that compare different index

methods with each other or with estimates of absolute abundance.

Most studies only compare the index values obtained in terms of

detection efficiency, precision and/or correlation (e.g. [1,4,6–12]).

None of these studies, however, used a framework that includes

possible sources of bias as covariates in a regression model.

Regression models can easily be used to include variables possibly

biasing an index (e.g. [13]). Further, they can be expanded to

extract information on factors that might influence species relative
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abundance such as landscape variables (e.g. [14]). By comparing

the effects of these factors, such an approach also enables

comparison of indices not gathered at exactly the same locations.

To our knowledge the approach of inclusion of possible sources of

bias in a regression analysis for obtaining unbiased estimates of the

variables of interest has not been used in the abundance estimation

of mammalian carnivores so far. On the other hand, this approach

is often used in other fields and is an appealing advantage of

multiple regression models.

Usage of automatic cameras has become very popular during

the last years in wildlife research, especially if the animals under

investigation are cryptic or elusive. Automatic cameras facilitate

species inventory (e.g. [15–17]) and allow abundance estimates of

species that can be individually identified from pictures using

capture-recapture techniques (e.g. [18–20]). For species that

cannot be individually identified, photographic rate has been

used as an index of abundance (e.g. [21–23]). A close correlation

between the index derived from cameras with absolute abundance

has been shown for tigers (Panthera tigris; [21]) and Harvey’s duikers

(Cephalophus harveyi; [22]). [24] suspects fewer sources of bias for

indices derived from camera traps than from other field methods.

Before the rise of camera traps, feces, pellet or dung counts

maybe have been the widest used method to derive indices of

abundance, as they are practical for many cryptic species in

different habitats and are cost effective. While new camera

technology has eagerly been adopted by many scientists, it

remained unclear whether camera traps really are better than

conventional feces counts in terms of effectiveness and efficiency.

In this study, we applied two independently collected indices of

red fox (Vulpes vulpes) abundance to obtain reliable estimates at the

landscape scale: the frequency of feces along line transects and the

frequency of photographs obtained by camera traps. We used

negative binomial regression models, to independently identify

landscape parameters that influence the feces frequency or the

photographic rate, respectively. In these models, we included

factors that we assume to possibly bias the index methods. Then,

we used the obtained regression coefficients to predict and map

relative abundance. We compared fecal-based and camera-based

model coefficients and model predictions. Further, we compared

the economical costs and the precision of the two methods. Our

objectives were to provide and use a framework, that allows the

comparison of two or more different abundance estimates and to

provide information on the costs and precision of feces counts and

camera traps to support researchers and managers in choosing

appropriate field techniques. This paper builds on a previous

study, in which we employed regression models to identify

landscape parameters influencing red fox abundance based on

feces counts [25].

Methods

Ethics Statement
We obtained the permission to perform line transect searches

within nature reserves from the Environmental Department at the

Regierungspräsidium Freiburg. For all other areas no permission

was required as unrestricted rights to access nature apply. We

located all cameras in state owned forests of five counties. We

obtained the permission for this from the Landratsämtern of the

five counties: Emmendingen, Rastatt, Calw, Waldshut-Tiengen

and Breisgau-Hochschwarzwald. Both field methods were indirect

methods and did not involve direct encounter with animals.

Study area
This study was carried out in the Black Forest, a low mountain

range located in south-western Germany, which ranges from 120

to 1493 m a.s.l. Two thirds of the Black Forest’s approximately

6000 km2 are forested. The annual mean temperature ranges from

between 4uC at higher elevations and 10.4uC in the valleys [26].

Forests are conifer-dominated. Landscape composition varies

significantly across the Black Forest. Large continuous forest

dominates the northern uplands, whereas in the southern uplands

forest is intermixed with grasslands and settlements; in the valleys

and in the eastern part of the Black Forest mosaics of forest,

grassland, agricultural fields and settlements dominate the

landscape.

Study design
Feces counts. We used feces count data as described,

analyzed, and discussed in [25]. Here, we give a short summary

of the methods and refer the reader to [25] for a more detailed

description. We searched for feces on line transects (length:

1.2 km), as selectively searching only along roads, tracks or linear

features might be biased and is less precise than searching along

line transects [27]. On a map we placed 6 study rectangles

(ranging from 334 to 461 km2; total area: 2430 km2) dispersed

across the Black Forest to capture most of its ecological gradient.

On top, we placed a regular grid with 5 km spacing and

investigated line transects at the grid points that fell within one

of the study rectangles (Fig. 1). We performed line transect

searches between October and the beginning of December in 2009

(134 line transects) and 2010 (132 line transects).

We searched intensively for red fox feces one meter to each side

of the line transect at an average walking speed of 1 km per hour,

but also recorded feces further away from the transect line. We

identified feces according to their size, shape, odor and content

[28]. Using an upright standing checker board (161 m), we

recorded visibility every 300 m as the percentage of the board that

was visible. We had to exclude 4 line transects from the analysis

because large parts of these transects were covered by new foliage.

Remote camera traps. We placed 43 heat-motion triggered

cameras (Cuddyback Caputre 1125, Non Typical Inc., Green Bay,

WI) in the northern part of the Black Forest and 48 and in

southern part (Fig.1), in two three week sessions between mid April

and mid June. A pilot study had revealed that camera traps placed

randomly in the forest did not yield enough red fox photographs

for analysis (unpublished data); we therefore placed cameras along

trails or unpaved forestry roads about 20 cm above the ground on

trees. Camera locations were spaced at least 2 km apart, to

minimize the chance of photographing the same individual at two

different locations (compare [29]). We used the information gained

from the feces counts and selected camera locations to cover the

range of predicted relative abundances. We especially attempted

to sample locations at high and low predicted relative abundances,

as this can increase the precision of the estimation of a linear

predictor (as the slope of the regression line depends much on the

measurements at extreme values). Red foxes supposedly use trails

more frequently in steep as compared to flat terrain [27]. We

therefore selected camera locations to include steep and flat terrain

across all levels of the predicted relative abundance from the feces

counts.

We recorded camera locations using a global positioning system

(GPS). We assigned the type of trail a camera was aimed at to one

of four categories (1: animal trail, or old, out-of-use machinery

road, 2: machinery road, 3: hiking trail, 4: unpaved forestry road).

Further, we recorded the percentage of the ground cover in a

circle with radius 3 m around the midpoint of the camera’s aim,
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excluding the trail itself. From this we classified two categories: low

ground cover (with ground cover in the circle of less or equal to

one third) and high ground cover (with more than one third of

ground cover in the circle).

Of the 91 different camera locations from the two trapping

sessions, 88 provided pictures for further analysis. The three

missing camera locations were due to theft and to camera and

memory card malfunction. For all camera locations, we noted the

number of red fox pictures and the number of nights the camera

was operating, normally between 20 and 24 nights depending on

the time of set-up and removal of camera traps. Not all camera

traps were properly operating the entire session. If the time at

which the camera trap ceased operating properly was evident from

the recorded photographs, we used the number of trap nights the

camera was operating properly. In cases where the time point was

not clear, we used the midpoint between the last proper

photograph and the detection of malfunction as the end of the

operating time and noted the resulting trap nights. We used the

approach of [23] to get an index of abundance out of all pictures

obtained with the camera traps.

Identification of landscape variables that influence
relative abundance

As described in [25], we used negative binomial regression

models to extract the landscape variables that influenced relative

feces abundance. For the index obtained from the camera traps,

we used exactly the same approach. We used the index obtained at

each camera location as the dependent variable in a negative

binomial regression model and included the landscape variables

and possible confounding variables as explanatory variables and

the log-transformed number of camera nights as the offset.

We extracted the landscape variables for each line transect and

each camera location to identify the variables that influence

relative feces abundance or photographic rates in a geographical

information system (GIS). We placed a 1000 m buffer around

each transect and camera location and extracted the mean of two

metrics of primary productivity and two metrics of landscape

heterogeneity for each buffer. As metrics for primary productivity

we used soil quality (an index of soil texture, soil type, humus type,

nutrient status and hydrological regime, compare [30]) and

duration of the growing season (i.e., days above 10uC). To

measure landscape heterogeneity we used landscape diversity (i.e.

the Shannon Eveness Index [31]) and edge density (length of edges

Figure 1. Map of the Black Forest. Transects of the feces counts (left): black rectangles indicate study rectangles, lines indicate transects searched
(black: 2009, grey: 2010). Locations of the camera traps (right): grey circles indicate location of camera traps of the first session from 16.04. to
11.05.2012, black circles indicate locations of the second session from 24.05. till 15.06.2012. The left figure is reprinted from [25] under a CC BY license,
with permission from Springer, original copyright 2013.
doi:10.1371/journal.pone.0094537.g001
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between different land cover types in kilometer per square

kilometer).

We used the shape data provided in the German Authoritative

Topographic-Cartographic Information System (ATKIS) with the

program ArcGIS 10 (ESRI, Environmental Systems Research

Institute, Inc., Redlands, California, USA) to extract the landscape

data. We recoded the soil quality index of [30] to obtain an index

with increasing values for increasing soil quality by multiplying it

with minus one.

We adjusted for possible bias of the index counts, by including

possible confounder variables in the regression models. In the feces

count model, we included the percentage of grassland in a 2 m

buffer around the line transect (due to the expected higher red fox

activity, and thus marking frequency, in grassland, which is a

preferred feeding habitat of red foxes [32] and to represent

visibility), the slope along the line transect (as walking for the

observer is more difficult in steep terrain, detection probability

might be negatively affected by slope) and the mean ground

visibility recorded during field work. In the camera trap model,

instead, we included the slope in the 50 m buffer around the

camera location (as we hypothesized the higher usage of trails as

the terrain becomes steeper), the vegetation cover around the

camera location (as we expected foxes to use trails more in areas

with dense surrounding ground vegetation) and the type of trail the

camera was located on (due to possible differences in the usage by

foxes dependent on the type of trail).

In the feces count model, we included random effects for the

study rectangle, grid point (to account for the nested design and

possible spatial autocorrelation) and the observer (to account for

individual differences in the detection probability of feces). For

both index methods, we used model selection based on AICc to

identify the models that were most supported by the data. We

included all confounding variables and random effects in all

models and only selected the landscape variables. From all models

with D AICc ,2 we calculated an averaged model and relative

variable importance for each index method [33]. We calculated

relative variable importance for variable k as the sum of the AIC

weights across all the models in the set where the variable k

occurred [33]. We used full model averaged coefficients, but

reported subset averaged p-values, as the calculation of variances

and p-values for full model averaged coefficients is an unresolved

issue [34].

Using smooth and quadratic functions in the full model, we did

not find any indication of nonlinearity of effects. Further, we did

not find any indication of spatial autocorrelation in the full and the

top ranked models using a permutation based Moran’s I

correlogram [35]. We used the statistical software package R

[36] for all analyses, with the glmmADMB-glmmadmb, MuMin-

dredge, ncf-mantel.test and mgvc-gam functions and used the

natural logarithm as link function in the negative binomial models.

Prediction of relative abundance
We used the results from the negative binomial models to

predict and map relative fox abundance to the extent of the Black

Forest separately for each of the two index methods. First, we

calculated the mean value of the landscape variables in a circle

with a radius of 1000 m for each cell (cell size 50 m). These values

we then inserted into the negative binomial model equation of

each of the best ranked models (D AICc ,2) to obtain the

predicted relative abundance for each cell. Then, we averaged the

predictions for each of the two index methods using the Akaike

weights. More details on the calculation of the prediction and the

implementation in ArcGIS are given in [25]. Additionally, we

rescaled both predictions to range between zero and one, by

subtraction of the minimum and division by the range of each the

methods prediction.

Comparison of the two index methods
Comparison of predicted relative abundance. To com-

pare the prediction of relative abundance of the two methods we

subtracted the prediction from the camera traps of the prediction

of the feces counts. Further, we calculated the Pearson correlation

between the two methods’ prediction of 10,000 random points,

generated in ArcGIS with at least 200 m between points, to

prevent clustering.

Comparison of costs. For the estimation of the economic

cost of the two methods we separated four different categories:

initial costs, running costs for equipment, travelling costs and

person days, and used average cost levels in Germany in 2013.

The initial cost for the feces counts consisted of three compasses,

three GPS units with rechargeable batteries and charger and the

materials to make the checker boards. The initial cost for the

camera traps included one GPS unit with rechargeable batteries

and charger, 46 camera trap units with memory cards and steel

cables with pad locks to secure the camera traps on the trees.

There were no running equipment costs for the feces counts,

whereas the running equipment costs for the camera traps came

only from batteries. Travelling costs were calculated as the driven

kilometers times the kilometer rate reimbursed by Freiburg

University (0.25 Euros per km). We added all hours spent for

preparation, field work and data management and divided by

eight to get the number of person days. We differentiated between

hours worked by a qualified worker and hours worked by

untrained workers. Sign surveys, such as the feces counts, depend

strongly on correct identification. Training of untrained workers

took between 3–5 days dependent on the worker’s prior

knowledge. During training the trainee accompanied a qualified

worker during the feces counts. For the feces counts the person

days included training time, if needed, travelling time, time for

fieldwork and time for preparation and documentation. Camera

trap person days included time spent on camera trap testing,

camera location selection, equipment preparation and the time

required to inform land owners, travel, set up and take down

camera traps and screen pictures. We used the number of person

days as the main unit of comparison, as the costs of labor vary

significantly across the world, but we also calculated labor costs in

Euro associated with our studies. The untrained workers were all

university students, who completed their theses using data from

the study or as part of their required course work and therefore

were unpaid. To obtain the monetary value of the labor, we

multiplied the days worked by qualified workers by 240 euro, the

average costs for the Freiburg University for an experienced

worker.

Comparison of precision. Asides from accuracy, precision

is the key feature of all methods for estimating animal abundance.

We used the heterogeneity parameter, a, from the negative

binomial model with the smallest AICc of each of the two index

methods to assess the precision of these two index methods. The

variance of the negative binomial distribution is var(Yi) = mi+a mi
2,

where mi relates to the Poisson variance and a mi
2 to the extra

variance. Hence, a= 0 yields the Poisson model and the more

extra variance is added to the model the larger is a [37].

Results

We found between 0 and 7 feces per transect. The number of

photographs at the camera locations ranged between 0 and 40

(Fig. 2). For all landscape parameters, the interquartile range

Index Methods to Assess Red Fox Abundance
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(represented as the length of the box in the boxplots), a measure of

dispersion, was larger in the camera trap data than in the feces

count data.

The model selection process yielded seven models for the feces

counts and five models for the camera traps with DAICc,2

(compare [25] and Table S1), which we used to calculate an

averaged model for each index method (Tables 1 and 2). In the

model derived from the feces counts, landscape diversity and edge

density had the largest relative importance (RI = 0.56) with

averaged coefficients of b= 0.48 (diversity) and b= 0.061 (edge

density). Whereas, in the model from the camera data, landscape

diversity had more influence than edge density, where it had larger

relative importance (RI = 0.65) than edge density (RI = 0.35). Also,

the averaged coefficient of landscape diversity in the camera trap

model (b= 0.71) was larger than in the feces counts model and the

estimate for edge density was smaller (b= 0.044) than in the feces

counts model. The subset averaged p-values of diversity and edge

density were roughly ten times smaller in the model from camera

traps than in the feces count model. Soil quality had a relative

importance of RI = 0.27 and duration of the growing season had

with RI = 0.19, an even lower relative importance in the feces

count model. This relationship was reversed in the model from the

camera traps, in which duration of the growing season had larger

relative importance (RI = 0.31) than soil quality (RI = 0.14). Also,

the magnitude of the averaged regression coefficients was different;

the estimate of soil quality was larger in the feces count model,

whereas the estimate of growing season was larger in the camera

trap model. The subset averaged p-values suggested that both

variables had no statistical significance in either model.

Of the confounding variables vegetation had, as expected, a

positive effect (b= 0.75) on the number of photographs, indicating

more fox photographs when the proportion of ground cover was

more than one third. Also, slope had, as hypothesized, a positive

effect (b= 0.011), which was not statistically significant. Further,

we obtained significantly more photographs on trail type 3 (hiking

trail, b= 1.30) and trail type 4 (unpaved forestry road, b= 1.81)

than on trail type 1 (animal path). The confounding effects of the

feces counts have been described in [25].

The averaged extrapolations from the two index methods

resulted in almost identical patterns of predicted relative red fox

abundance in the Black Forest (Fig. 3a,b); with high predicted

relative red fox abundance in the valley bottoms and the eastern

Black Forest, which consist of heterogeneous landscapes.

The subtraction of the prediction from the camera traps of the

prediction of the feces counts (Fig. 3c), revealed the differences

between the two predictions. The differences were low with most

values under 0.025 and a maximum difference of 0.16. The higher

differences occurred in the areas of high predicted red fox

abundance. For most locations the prediction of the feces counts

was larger than the prediction of the camera traps. The correlation

between the values of the two methods at 10,000 random points

was 0.989 (p,0.0001).

With respect to the overall economical cost associated with

performing feces counts of the 262 line transects (17057 Euros) and

the number of photographs from 88 camera locations (16323

Euros) used in the analysis, the two methods were similar (Table 3).

The two index methods differed significantly in the costs of

equipment, which was mainly due to the initial investment, which

was more than 10 times higher for the camera traps than for feces

counts. The number of person days also varied significantly

between the two methods, with more person days (133 days)

required for the feces counts than for the camera traps (44 days).

The heterogeneity parameter of the top negative binomial

model was smaller for the feces counts (a= 0.53) than for the

camera traps (a= 0.89), meaning there was less variation in the

feces counts than there was in the number of photographs.

Discussion

We presented and used a framework that allows for comparison

of two or more very different field methods of animal abundance.

Further, we compared the field methods with regard to their

economical costs and their precision.

In our study, both the estimated regression coefficients and the

predicted relative abundance from the two index methods were

very similar. There were some differences between the two

methods in the magnitude of the averaged estimates of the

landscape parameters, which could have been due to the close

correlation of landscape diversity and edge density in the Black

Forest, making a clear attribution of differences in the index to one

of the two parameters impossible. The estimated regression

coefficient of diversity was larger in the camera trap model than

in the feces count model, whereas the regression coefficient of edge

density was larger in the feces count model than in the camera trap

model. The relative abundances predicted based on the parameter

estimates from feces counts, versus camera traps, respectively,

Figure 2. Boxplots of the distribution of the observed values of the index variable (feces count on transect, number of photographs
at camera location) and the landscape variables: diversity, edge density, soil quality and growing season for feces counts (n = 262
transects, A) and camera traps (n = 88 camera locations, B).
doi:10.1371/journal.pone.0094537.g002
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were almost identical. We already showed a strong correlation on

the county level between the predicted relative abundance based

on the feces counts and the hunting bags averaged over several

years, which gave evidence that the prediction based on the feces

counts is linked not only to feces abundance, but also to red fox

abundance [25]. The similarity between the predictions of the two

index methods added further evidence that there is a close

connection between the prediction and the true relative red fox

abundance in the Black Forest, and that feces counts and camera

traps are both suitable methods for estimating relative red fox

abundance. As we employed the camera traps in a different season

and two years after the feces counts, the similarity between the

predictions is even more an indicator of red fox abundance

depending on landscape diversity and edge density, which both

did not change between seasons and years.

We compared the two methods with regards to economic cost,

precision and sample size to help wildlife ecologists choose the

appropriate field technique for animal abundance estimation in

their study. Regarding the economical costs, the equipment costs

were by far lower for the feces counts than for the camera traps,

whereas the required person days to complete the field work was

higher for the feces counts. In projects with low budget, feces

counts are therefore recommended if volunteers are available,

whereas the high initial costs of the camera traps may pay off in

long term studies.

We found differences in the precision of the two index methods;

the feces count results were more precise than those based on the

camera traps. The line transects used as the sampling unit for the

feces counts, each cover a large cross sectional area; this increases

variation within the sampling units, and reduces variation among

them [38]. The camera locations, on the other hand, only capture

a small area; as a consequence, the number of red fox photographs

at each location varied significantly (between 0 and 47

photographs), dependent not only on differences in the landscape

Table 1. Relative variable importance (RI) and full model averaged regression coefficients (averaged b) of the averaged feces
count model and p-values of the subset averaged feces count model. RI indicates the sum of the weights of all models (with
DAICc,2), in which each variable was included.

RI Averaged b p-value Subset Ave.

Landscape Variables

Diversity 0.56 0.48 0.048

Edge Density 0.56 0.061 0.060

Soil Quality 0.27 0.027 0.26

Growing Season 0.19 7.0 e24 0.48

Confounder

Grass 1 0.83 0.037

Slope 1 20.040 0.011

Visibility 1 0.23 0.81

Year 2010 1 20.42 0.045

The confounder variables were not included in the selection process and hence are in all models (RI = 1).
doi:10.1371/journal.pone.0094537.t001

Table 2. Relative variable importance (RI) and full model averaged regression coefficients (averaged b) of the averaged camera
trap model and p-value of the subset averaged camera trap model. RI indicates the sum of the weights of all models (with DAICc,

2), in which each variable was included.

RI Averaged b p-value Subset Ave.

Landscape Variables

Diversity 0.65 0.72 0.0048

Edge Density 0.35 0.044 0.0073

Soil Quality 0.14 0.010 0.43

Growing Season 0.31 1.9 e23 0.25

Confounder

Vegetation 1 0.75 0.0044

Slope 1 0.011 0.48

Trail Type 2 1 0.52 0.20

Trail Type 3 1.30 0.001

Trail Type 4 1.81 ,0.001

The confounder variables were not included in the selection process and hence are in all models (RI = 1).
doi:10.1371/journal.pone.0094537.t002
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parameters or confounding variables, but also due to other factors

that we were not able to collect, such as the proximity of camera

locations to dens, resting sites, hunting grounds or travelling

routes. In other studies the great variation among camera trap

locations has led to reduced power to detect differences in animal

abundance. [22] found significant differences for Harvey’s duiker

(Cephalophus harveyi) using line transect counts in combination with

distance sampling for all but three pairwise comparisons of their

six study sites, whereas using camera traps, they only found

significant differences between the three most extreme observa-

tions. Further, [39] only found significant differences in the red fox

picture index before and after intensive fox control in one of two

years, even though the index value decreased by 23% in the non

significant year. Earlier studies using track plots, which have

similar statistical properties, revealed large standard deviations

[40] and low power to detect significant differences [41,42].

Even though the camera traps were less precise and the number

of samples was only about one third of the sample size from the

feces counts, the subset averaged p-values of landscape diversity

and edge density were ten times smaller in the camera trap model

than in the feces count model. We believe this was due to the fact

that we selected the camera locations with prior knowledge of

possible differences in relative red fox abundance and allocated

more samples to extreme values of landscape diversity and edge

density. This pre-selection led to the increased interquartile range

in the boxplots of the two variables and by this increased the

Figure 3. Predicted relative red fox abundance in the Black Forest extrapolated from the results of the feces counts (left) and the
camera traps (middle). Difference between the two predictions in percent (prediction from feces counts – prediction from camera trap, right). The
left figure is reprinted from [25] under a CC BY license, with permission from Springer, original copyright 2013.
doi:10.1371/journal.pone.0094537.g003

Table 3. Economical costs associated with the index methods based on feces count (n = 262) and camera traps (n = 88).

Feces counts Camera traps

Equipment

Initial costs 882 J 10864 J

Running costs equipment 0 J 200 J

Travelling costs 1536 J 939 J

Subtotal 2417 J 12003 J

Labor

Qualified worker 61 days 18 days

Untrained worker 72 days 26 days

Labor cost (240 J for an qualified worker per day) 14640 J 4320 J

Total costs 17057 J 16323 J

doi:10.1371/journal.pone.0094537.t003
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power to detect a relationship between landscape diversity and

edge density and probably also increased the number of

photographs. We only had this knowledge, because we already

had the results of the feces counts available, which would not be

the case if the studies had taken place at the same time.

The performance of camera traps as an index method can be

further improved if the number of locations with zero photographs

is reduced. In our study, the number of photographs could be

improved by stationing camera locations only on hiking trails or

unpaved forestry roads with high ground cover surrounding the

camera location.

We advise wildlife ecologists to use at least two independent

index methods whenever possible, to obtain more reliable

estimates of abundance. Our approach can be used as framework

on how to use and compare the abundance estimates from

different field methods and by this enhance reliability of the

abundance estimate. The approach can also be used for

identifying changes in relative abundance between years or

seasons, or differences between areas, simply by including a factor

in the regression model and adding possible interactions between

the factor and the landscape or confounder variables. The results

can then be employed to obtain, for example, season specific

predictions. Further, the results of different methods can also be

averaged to obtain just one single prediction, but more research is

needed on the practical realization of this and we refrained from

doing so as our results were similar.

Supporting Information

Table S1 Result of the model selection of the camera
trap data from the negative binomial regression model
to identify variables connected with red fox abundance.
Listed are the estimated regression coefficients of the included

variables, AICc, DAICc, and the Akaike weight of the best ranked

models (DAICc,2).
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